

A No-Code Approach to Decision Support and Knowledge Capturing

simon.vandevelde@kuleuven.be

https://simonvandevel.de

https://DTAI.cs.kuleuven.be

Declarative Languages and Artificial Intelligence

	Basic Research	Applications		
15 Faculty	Probabilistic Programming	Sports Analytics / Health		
2 (IOF) Research Manager	Predictive Learning and Clustering	Anomaly Detection		
: 60 PhD Researchers	Automated Data Science	Robotics		
> 80 Alumni	Neuro-Symbolic	Engineering and Sensors		
REPARTEMENT COMPUTER WETENSCHAPPEN Regiseering Science Regiseering Science Regiseering Science	Privacy, Non-discrimination and Ethics	Creativity		
	Constraints	Texts and Web		
	Functional Programming	Games		
	Knowledge Base Systems	http://dtai.cs.kuleuven.be/stories		
		KU LEUVEN		

Research topic

- Applications of (knowledge-based) AI technology
- Decision support
 - Ecosystem of tools
 - Concrete use cases with industrial partners

Contents

- Introduction: Knowledge-based AI methods in context
- Applications: Decision support
- Hands-on DMN
- Limitations of DMN
 - Interactive consultant
 - cDMN
- A deeper look
 - At inference tasks
 - At cDMN
- A realistic example
- Conclusions: use cases

Introduction:

Knowledge-based AI methods

Artificial Intelligence

 Build systems that exhibit intelligent behaviour

Different kinds: small experiment

Don't read this text

2875 + 1223 = ?

System 1

"Thinking fast"

- Automatic, effortless
- Implicit patterns
- Intuition from (lots of) experience
- Black box

System 2

"Thinking slow"

- Conscious reasoning
- Explicit information
- Rational, logical
- Explainable

System 1

- Powerful:
 - Not exact matching
 - Learn implicit patterns
 - But error-prone
 - Requires a lot of data

Yuo cna porbalby raed tihs esaliy desptie teh msispeillgns.

- Easily transferable
- Requires explicit knowledge
 - Black and white

System 1

- Pick up statistical patterns
- Not always accurate

System 2

- Use explicit knowledge
- More reliable

Artificial System 1

- Applications
 - Computer vision
 - Natural language processing
 - Audio processing
- Methods
 - Machine Learning
 - Deep Learning
 - Large Language Models

Artificial System 2

- Applications
 - Route planning
 - Scheduling
 - Game playing
- Methods
 - Knowledge Representation
 - Logic-based Al

Applications: Decision support

Concrete use cases

- Product selection Joining & Materials lab (Flanders Make)
- Product design Manufacturing multinational
- Support for notary Software company
- Selection of financial products Intelli-Select

. . .

Seal design for challenging applications

Reliability is key

Process (before)

Goals

Goals

Resources

- Knowledge of engineers
 - Very valuable
 - Useful
 - Safeguarding
- Database of earlier designs
 - Unlabeled
 - Limited usefulness

Resources

- Knowledge of engineers
 - Very valuable
 - Useful
 - Safeguarding
- Database of earlier designs
 - Unlabeled
 - Limited usefulness

27

KU LEUVEN

KU LEUVEN

DMN

- Industry standard (OMG group)
- Readable / writable for domain experts
- Supported by different tools

				Beslissi	ingsregels	voor het generen v	an het CS	т								
<u>Lidstaat van de vaccinatie</u> of <u>lidstaat van de</u> t <u>est</u>					Lids	taat van de EU, EEF	, Verenig	d Koninkr	ijk of Zwit	serland						Nee
<u>Geboortejaar</u> betrokkene	2009 of later						Vroe	ger dan 2	009							-
<u>Datum eerste positieve testresultaat</u> op certificaat van herstel	-	180 dagen of minder geleden	Meer dan 180 dagen geleden										-			
Vaccinatiestatus op vaccinatiecertificaat	-	-				1/1 of 2/2						Andere waar	rde			-
V <u>accinatiedatum</u> op vaccinatiecertificaat	-		14 dagen of meer geleden		N	Ainder dan 14 dage	n geleden					-				-
<u>Resultaat van de test</u> op testcertificaat	-	-	-			Negatief			Andere waarde			Negatief			Andere waarde	-
<u>Datum van afname</u> op testcertificaat	-	-	-	3 dagen	geleden	2 dagen of minder	geleden	Andere waarde	-	3 dagen ;	geleden	2 dagen of minde	r geleden	Andere waarde	-	-
T <u>ype test</u> op testcertificaat	-		-	NAAT	Andere waarde	NAAT of Erkende RAT	Andere waarde	-	-	NAAT	Andere waarde	NAAT of Erkende RAT	Andere waarde	-	-	-
CST geeft toegang tot evenement	×	×	×	x	-	×	-	-	-	×	-	x	-	-	-	-
CST geeft geen toegang tot evenement	-	-	-	-	x	-	х	х	x	-	x	-	х	×	x	х
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

Bijlage I: Tabel Beslissingsregels voor het generen van het Covid Safe Ticket

Approach

- Workshops with engineering team
 → Decision Requirements Diagram
- Team fills out and maintains tables

De					
A	Back	Position	Design Type		
	Pressure				
1		Pressure Accumulating	_	_	Open
2	2 3 4 5 6	Bi Directional			Open
3		not(Pressure Accumulating	> 150		Open
4			(100, 150]	≥ -50	Open
5		Ri Directional)	(100, 150]	< -50	Closed
6		Di Directional)	≤ 100	_	Closed
7	False				Closed

Joint interactive modeling

- Reliable: no misunderstandings
- Maintainable: no implementation delays
- Ownership stays with the experts

Hands-on DMN

Input variable(s)

Decision variable(s)

	De							
	A	Back	Position	Pressure	Temperature	Design Type		
	and a	Pressure						
Overlap?	1	True	Pressure Accumulating	—	_	Open		
	2		Bi Directional			Open		
	3		not(Pressure Accumulating, Bi Directional)	>150		Open		
	4			(100, 150]	≥ -50	Open		
	5			(100, 150]	< -50	Closed		
	6			≤ 100		Closed		
	7	False				Closed		

Hit policy

- Unique
- First
- Any
- Collect, e.g., C+
Running example

- Decision support for hanging object on our wall
 - Nail or screw or glue?

- First, you need to know **if you can make a hole** in the wall:
 - You can do this in brick or wood, but not in tile
- Then, you can decide how to hang the object:
 - If you can make a hole and the object weighs <= 20kg, use nails
 - If you can make a hole and the object weighs > 20kg and <= 40 kg, use screws
 - If the object is heavier than 40 kg, give up
 - If you can't make a hole and the object weighs <= 15 kg, use glue
 - If you can't make a hole and the object weighs > 15 kg, give up

Commercial tool

https://demo.bpmn.io/dmn

slides.simonvandevelde.be/workshop-ac

Try it: Handyman in DMN

Goals

KU LEUVEN

Limitations

Limitations of...

• DMN tools: "bottom-up" simulation

• DMN language: deterministic decision processes

Limitations of...

• DMN tools: "bottom-up" simulation

Expert users

Responsibility

- More information
- Integrate into their proces

• DMN language: deterministic decision processes

Knowledge-base paradigm

 \neq single fixed work-flow

Interactive Consultant

- What is the cheapest design for these requirements?
- Why is this design not possible for these requirements?

KU LEUVEN

Limitations of...

• DMN tools: "bottom-up" simulation

• DMN language: deterministic decision processes

Limitation: DMN language itself

De	esign Type					
Α	Back	Position	Pressure	Temperature	Design Type	
	Pressure					
1	True	Pressure Accumulating		—	Open	
2		Bi Directional		—	Open	
3		not(Pressure Accumulating, Bi Directional)	> 150	- (Open	
4			(100, 150]	≥ -50	Open	Contraction of the local division of the loc
5			(100, 150]	< -50	Closed	
6			≤ 100		Closed	
7	False	—			Closed	

What but not why

Constraints + preferences

For design support

De	esign Type					
А	Back	Position	Pressure	Temperature	Design Type	
	Pressure					
1	True	Pressure Accumulating	—	_	Open	
2		Bi Directional			Open	
3		not(Pressure Accumulating, Bi Directional)	> 150		Open	
4			(100, 150]	≥ -50	Open	From DMN
5			(100, 150]	< -50	Closed	
6			≤ 100		Closed	Succession of the succession o
7	False				Closed	

Coi	mponent Materia			
E*	Component	Component is Used	Design Type	Material of Component
1	Body	True	-	M1, M2, M3
2	Spring , Spacer	True	-	M1, M3, M5
3	-	False	-	null
4	Body	True	Closed	Not(M2)

... to cDMN

The second second

- If you can make a hole and the object weighs (20,40] kg, use screws
- If you can make a hole and the object weighs <= 20kg, use nails
- If you can't make a hole and the object weighs <= 15 kg, use glue

- If you can make a hole and the object weighs (20,40] kg, use screws
- If you can make a hole and the object weighs <= 20kg, use nails
- If you can't make a hole and the object weighs <= 15 kg, use glue

Constraints

Constraints + preferences

- Nails support weights up to 20kg,
- Screws support up to 40kg
- Glue supports only 15kg.
- Nails and screws require holes in the wall, which is possible for brick or wood, but not for tiles.
- Preference
 - I like nails better than screws better than glue

Why

What

- If you can make a hole and the object weighs (20,40] kg, use screws
- If you can make a hole and the object weighs <= 20kg, use nails
- If you can't make a hole and the object weighs <= 15 kg, use glue

- Constraints
 - Nails support weights up to 20kg,
 - Screws support up to 40kg
 - Glue supports only 15kg.
 - Nails and screws require holes in the wall, which is possible for brick or wood, but not for tiles.
- Preference
 - I like nails better than screws better than glue

Goals

Controlled Natural Language

• Domain expert friendly

cDMN

Interactive Consultant

000

KU LEUVEN

• User-friendly interaction

IDP-Z3

A deeper look: At the inference tasks

Knowledge About the difference between good and bad

situations

• Nails support weights up to 20kg, screws support up to 40kg and glue supports only 15kg.

wall := Brick.

method := Glue.

weight := 1.

• Nails and screws require holes in the wall, which is possible for brick or wooden walls, but not for tiles.

method := Nail.

KU LEUVEI

wall := Brick.

weight := 1.

method := Nail.

Non models

6161

Knowledge

About the difference between good and bad situations Nails support weights up to 20kg, screws support up to 40kg and glue supports only 15kg.

Model

• Nails and screws require holes in the wall, which is possible for brick or wooden walls, but not for tiles.

Model checking: Is a situation good?

wall := Brick.
method := Nail.
weight := 1.

wall := Brick.
method := Glue.
weight := 1.

<u>Model generation:</u> Find (one or more) good situation(s)

wall := Brick.
method := Nail.
weight := 2.

64

Generalisation

<u>Model expansion:</u> Given part of situation, extend it to (a number of) model(s)

Which of these can you answer?

- Which methods are suitable for hanging a 25kg weight on a brick wall?
- There is a nail in my wall. How much weight will it support?
- Can we hang a 25kg object on a tile wall using glue?
- I want to hang a heavy object on my wooden wall, without knowing precisely how heavy it is. Which method will support the most weight?
- When would we use screws instead of nails?

Which of these can you answer?

- Which methods are suitable for hanging a 25kg weight on a brick wall?
- There is a nail in my wall. How much weight will it support?
- Can we hang a 25kg object on a tile wall using glue?
- I want to hang a heavy object on my wooden wall, without knowing precisely how heavy it is. Which method will support the most weight?
- When would we use screws instead of nails?

. . .

Goal

Minimize *weight*

KU LEUVEN

Given part of situation, find a model(s) in which constant has maximal/minimal value

68

Which of these can you answer?

- Which methods are suitable for hanging a 25kg weight on a brick wall?
- There is a nail in my wall. How much weight will it support?
- Can we hang a 25kg object on a tile wall using glue?
- I want to hang a heavy object on my wooden wall, without knowing precisely how heavy it is. Which method will support the most weight?
- When would we use screws instead of nails?

Which of these can you answer?

- Which methods are suitable for hanging a 25kg weight on a brick wall?
- There is a nail in my wall. How much weight will it support?
- Can we hang a 25kg object on a tile wall using glue?
- I want to hang a heavy object on my wooden wall, without knowing precisely how heavy it is. Which method will support the most weight?
- When would we use screws instead of nails?

- When would we use screws instead of nails?
 - A set of circumstances
 - That make it impossible to use nails
 - While using screws is possible

<u>Propagation</u> What are the consequences of set of circumstances?

Try it: Same "Handyman in cDMN"

- What functionalities are there?
- Which inference tasks do you recognise?

Knowledge Base Paradigm

- GUI and all functionalities are derived from single KB
- If you own a diamond drill bit, then it *is* possible to make a hole in tiles

Try it: Updating with diamond drill bit

A deeper look: At the cDMN language

Knowledge

About the difference between good and bad situations

Formal KB

- *Glossary:* how do we represent situations
- *Constraint tables:* the difference between good/bad situations

Knowledge

About the difference between good and bad situations

Formal KB

- *Glossary:* how do we represent situations
- *Constraint tables:* the difference between good/bad situations

- How do we represent situations:
 - Types
 - Constants
 - Functions
 - Relations
 - Booleans

- Values belong to types
 - Built-in types: Int, Real, String
 - User-defined types derived from built-in types
- **Constant** is a specific value from a certain type

Туре		
Name	Data Type	Possible Value
Wall	String	brick, wood, tile
Weight	Real	[0,50]
Decoration	String	picture frame, mirror, curtain

Constant		
Name	Data Type	
my bedroom wall	Wall	
the object to hang	Decoration	
the weight of the object	Weight	

Туре			
Name	Data Type	Possible Value	
Wall	String	brick, wood, tile	
Weight	Real	[0,50]	
Decoration	String	picture frame, mirror, curtain	
Constant			

Constant		
Name	Data Type	
my bedroom wall	Wall	
the object to hang	Decoration	
the weight of the object	Weight	

- Values belong to types
 - Built-in types: Int, Real, String, Datestring
 - User-defined types derived from built-in types
- Function maps tuples of values of a specific types to values of another type

Туре		
Name	Data Type	Possible Value
Wall	String	brick, wood, tile
Weight	Real	[0,50]
Decoration	String	picture frame, mirror, curtain

Туре			
Name	Data Type		Possible Value
Wall	Str	ing	brick, wood, tile
Weight	Real		[0,50]
Decoration	String		picture frame, mirror, curtain
Function			
Name		Data Type	
weight of Decoration		Weight	

- Values belong to types
 - Built-in types: Int, Real, String, Datestring
 - User-defined types derived from built-in types
- Bool is a constant with value Yes/No
- Relation is function that maps to Yes/No

Туре		
Name	Data Type	Possible Value
Wall	String	brick, wood, tile
Weight	Real	[0,50]
Decoration	String	picture frame, mirror, curtain
Dolation		

KU LEUVE

Туре			
Name	Data Type	Possible Value	
Wall	String	brick, wood, tile	
Weight	Real	[0,50]	
Decoration	String	picture frame, mirror, curtain	
Relation			
Name			
holes are possible in Wall			

Knowledge

About the difference between good and bad situations

Formal KB

- *Glossary:* how do we represent situations
- *Constraint tables:* the difference between good/bad situations

Data tables

One correct interpretation for this relation

Relation

Name

holes are possible in **Wall**

Data tables

One correct interpretation for this relation

D Wall	holes are possible in Wall
brick	Yes
wood	Yes
tile	No optional

Constraint tables

E* chosen method	holes are possible in <i>my</i> <i>bedroom wall</i>
nail	Yes
screw	Yes

E* chosen method	weight of the object to hang
nail	<= 30
screw	<= 40
glue	<= 15

Туре		
Name	Data Type	Possible Value
Wall	String	brick, wood, tile
Weight	Real	[0,50]
Decoration	String	picture frame, mirror. curtain
Method	String	nail, screw, glue

Constant				
Name	Data Type			
my bedroom wall	Wall			
the object to hang	Decoration			
chosen method	Method			

Relation					
Name					
holes are possible in Wall					
Function					
Name	Data Type				
weight of Decoration	Weight				

Constraint tables

⊏*							
	chosen method	weight of the object to hang					
	nail	<= 30					
	screw	<= 40					
	glue	<= 15					
=							
	weight of <i>the object to</i>	chosen method					
	(15,30] (30,40] <= 15		nail, screw				
			screw				
			_ optional				
E*							

weight of the object to hang

<= 40

Туре							
Name	Data Type		Possible Value				
Wall	String		brick, wood, tile				
Weight	Re	eal	[0,50]				
Decoration	String		picture frame, mirror, curtain				
Method	String		nail, screw, glue				
Constant							
Name		Data Type					
my bedroom wall		Wall					
the object to hang		Decoration					
chosen method		Method					
Relation							
Name							
holes are possible in Wall							
Function							
Name		Data Type					
weight of Decoration		Weight					

Component design example

- For the Outer component
 - If its material is P1, then the maximum temperature <= 100
 - If its material is P2, then the maximum temperature <= 150
 - If its material is P3, then the maximum temperature <= 200
- (For the Inner component, same thing)
- Inner and Outer component materials should be compatible
 - P1 \rightarrow P1,P2; P2 \rightarrow P1,P2; P3 \rightarrow P3

Try it: Component design -- basic model

Component design example

- For the Outer component
 - If its material is P1, then the maximum temperature <= 100
 - If its material is P2, then the maximum temperature <= 150
 - If its material is P3, then the maximum temperature <= 200
- (For the Inner component, same thing)
- Inner and Outer component materials should be compatible
 - P1 \rightarrow P1,P2; P2 \rightarrow P1,P2; P3 \rightarrow P3

- Add to glossary
- Change constraint

Try it: Component design -- with melting point model

Component design example

- For the Outer component
 - If its material is P1, then the maximum temperature <= 100
 - If its material is P2, then the maximum temperature <= 150
 - If its material is P3, then the maximum temperature <= 200
- (For the Inner component, same thing)
- Inner and Outer component naterials should be compatible
 - P1 \rightarrow P1,P2; P2 \rightarrow P1,P2; P3 \rightarrow P3

- Add to glossary
- Define in data table
- Change constraint

A realistic example

Team selection for R&D Project "Smart Compressors"

- Information about employees
 - Focus: Compressor, IoT and Prototype
 - Skills: Project Management, Functional analysis, Design
 - Experience: between 0 and 30 years
- Five employees:
 - *Edsger* knows **Compressor** and **IoT**. He has the "Design" skill. He has 12 years of experience.
 - Ada knows **Prototype** and **Compressor**. He has the "Design" and "Functional analysis" skills. She has 5 years of experience.
 - *Donald* knows **IoT**. He has the "Functional analysis" skill. He has 2 years of experience.
 - *Grace* knows **Compressor**, **IoT** and **Prototype**. She has the "Project Management" skill. She has 10 years of experience
 - *Brian* knows **IoT** and **Compressor**. He has the "Functional analysis" skill. He has1 year of experience.

Project team

- We need to select employees for a new project
- All selected employees should know Compressor
- All selected employees should have at least 2 years of experience
- One of the selected employees will be the Project Lead. This employee should have the "Project Management" skill and at least 5 years of experience.
- One employee should be the designer

Different inference tasks

- Who has to be part of the team?
- Who can't be on the team?
- Select a team
- What is the smallest / largest possible possible team?

Approach

- Only count the team size
- Add focus
- Add years of experience
- Add Project Lead
- Add skills
- Add Design constraint

Try it: Team selection

Conclusions and use cases

Seal design

- Standard product range
 - System for sales staff using DMN
 - Currently in production
 - DMN approach is being applied elsewhere
- Design-to-order
 - System for design engineers using FO(.) and cDMN
 - Integration with Machine Learning from database
 - Positive reactions to prototype, but concerns about required effort
 - Continued investigations, somewhere on their roadmap

Adhesive Selector

- Currently in use (54 cDMN tables ~ 500 constraints)
- Benchmark: 3 hours \rightarrow 3 minutes
- "Teaching" tool for juniors
- Seniors can discover "new" adhesives

Software company for notaries: Registration duties

- *Flexible support* during interview: non-intrusive
- Represented the relevant laws in DMND and cDMN
- Big change in 2018
 - 42 articles:
 - 4, + 5, ~ 9
 - 3 hours of effort needed

Generic tools / methods

Interactive consultant

