On the Role of Domain Experts
in LLM-Based Formalization

Simon Vandevelde (https://simonvandevelde.be), 26/08/2025

https://simonvandevelde.be/

1/18

Logic-based application

Company has staff specialized in process : tricky, time-consuming, error-prone
they wish to support staff with tool

is very knowledge-intensive
They know that:

M Logic-based tools exist
B4 Expressive KR languages
B4 Performant reasoners

How to model knowledge

2 Let's get experts to help us!

Knowledge Acquisition

Suzy: domain expert
(cannot formalize knowledge)

How to do this?

Just blablabla
and then ...

Ok. And how do you
calculate this?

Simple: square root of smallest
common denominator, multiplied by
7 plus ...

Ben: knowledge engineer
(does not know the problem domain

1/18

1/18

Knowledge Acquisition: an issue

Both parties have very distinct knowledge, making KA

= Time-consuming
= Error-prone

= Labour-intensive

much time needs to be spent on validation!
KA is notoriously difficult

Knowledge Acquisition Bottleneck

$2 Can we use LLMs to formalize knowledge instead?

1/18

LLM-based formalization: SotA

Two main groups:

Formalize domain knowledge Improve LLM reasoning
@ Generate model based on NL @ 'outsource' reasoning task to engine
= General; no intended reasoning task = Based on description and reasoning task
= Show potential, not perfect = Qutperform baseline LLMs
= Goossens 2023, Ishay 2023, Mensfelt 2024, = Olausson 2023, Pan 2023, Yang 2023,

https://lirias.kuleuven.be/retrieve/720326
https://arxiv.org/abs/2307.07699
https://arxiv.org/abs/2409.12300
https://arxiv.org/abs/2407.18723
https://arxiv.org/abs/2310.15164
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2307.07696
https://arxiv.org/abs/2501.14540

1/18

Example: VERUS-LM

KB Creation Inference

Semantic
! Refinement
#Refs<Max

1 UNsAT

% % _Correct < / Detect 3 Execute £
xtr: C it Extract F t {
Extract -+ Sl Syntax A — Question /=*| Reasoning |+ omp ex" xtrac =+ | Reasoning |=* orma Answer
Symbols Formulas Check Check Task Formula? Data & Goal Task Results

#Refs<Max

lSynlax error

5 Cloud Based Syntax o[construct 4 Gemini 1.5 Pro % BERT Classifier
Refinement -0 -
£ Local st B Microsoft Phi3.5 mini &% 1Dp-z3

1/18

Example: VERUS-LM

Knowledge:

[To calculate a patient’s BMI, divide their weight by their height squared.

Query:

[What is the BMI of a person of 1.79m weighing 80kg?

1. Symbol Extraction:
height: -> Int

weight: -> Int
BMI: -> Int

2. Formula Extraction:

BMI() = weight()/(height() * height())

1/18

Example: VERUS-LM

3. Refinement steps

4. Inference detection:

model generation

5. Information extraction:

structure S {
height := 1.79.
weight := 80.

6. Execute and format output

A patient with a height of 1.79 weighing 80kg would have a BMI of 24.96.

1/18

¥ Holy grail

Automatically build tools by:

1. Handing internal docs to an LLM
2. Letting the LLM formalize a KB
3. Plug the KB into an interface

Y # Holy fail:

= | LMs make formalization errors
m LLMs can still hallucinate/confabulate

= Jtis difficult to check if the resulting KB is correct

If LLMs only achieve 89% accuracy on small problems, how well will they perform on entire documents?

Alternative: domain expert in the loop!

1/18

Domain expert in the loop

= With the current LLMs, auto-formalization seems impossible
= In human-human KA, domain experts are crucial for validation!

= Why should this be different when using LLM?
= Still, domain experts cannot interpret formal models directly

£ How can a domain expert independently validate a KB?
Three ideas:

1. Visualisation and interaction tools

2. End-user formalisms

3. Incremental formalization

(More are possible)

1/18

Visualisation and interaction tools

= Visualise one or more solutions
= Interactively explore problem domain

= Verify that the model's behavior matches the expectations

Example: Interactive Consultant

A person may drive if they have either a standard permit or a learner’s permit. A standard permit is only possible for 18+, but a
learner’s permit can already be gotten at 16+.

https://interactive-consultant.idp-z3.be/?file=permit.idp

Other tools: clinguin, clingraph, ASP Chef, Clafer configurator

https://interactive-consultant.idp-z3.be/?file=permit.idp

1/18

End-user formalism

Current approach:

User cannot understand produced format.

What if we could translate into an alternative notation instead?

K ;

End-user formalism

Idea: intermediary formalism that is

= More intuitive for non-experts

= Directly translatable into "traditional" formal logic

The barrier for validating such statements would be much lower.

Well-known example: Controlled Natural Languages, e.g., ACE:

Every country is a territory.

If X borders Y then Y borders X.

If X borders something then X is a country.
Germany borders Switzerland.

Ix: country(x) => territory(x).

Ix, y: borders(x, y) => borders(y, Xx).
Ix, y: borders(x, y) => borders(y, x).
Ix, y: borders(x, y) => country(x).
borders(Germany, Switzerland).

1/18

1/18

End-user formalisms

Multiple examples of such CNLs:

= ACE (Fuchs 2008)
= PENG (White 2009)
= CNL2ASP (Caruso 2023)

Other end-user formalisms also exist, but are often more graphical in nature

Extra: Domain-specific formalisms
= Domain-specific notation

= Aligns better to natural intuition of domain expert

= E.g., Logical English for regulatory knowledge

Incremental formalization

= | LM-based formalization focusses on "single-shot" translations
= [e., adocumentinto KB, instantly
= More difficult to validate

= | LMs are also limited in input tokens!

Instead, we should use incremental formalization

= Build model in multiple steps
= Decompose in substeps, iteratively refine model

= Each step allows for "bite-sized" validation

Bonus: would allow for "interactive chat sessions" where domain expert can explain their more tacit

knowledge.

1/18

1/18

User-centric LLM-based formalization

Three ideas:

1. Visualisation and interaction
2. End-user formalisms

3. Incremental formalization

These are not mutually exclusive!

1/18

Challenges

= Involving non-experts leads to high variability (e.g., based on formal background)
= Tools really need to be user-friendly
= Syntactic and semantic correctness of LLMs

= Incremental formalization is not always straightforward!

1/18

Thank you

Slides: https://slides.simonvandevelde.be/SeminarDjordje/slides.pdf

@ https://simonvandevelde.be

https://slides.simonvandevelde.be/SeminarDjordje/slides.pdf
https://simonvandevelde.be/
mailto:s.vandevelde@kuleuven.be
https://mastodon.social/@SaltFactory
https://www.linkedin.com/in/simon-vandevelde-49a07a182/

